
TB Case Surveillance Tracker Installation Guide {
#tb-cs-installation }
Package Version 2.0.0

System default language: English

Available translations: French, Spanish, Portuguese

Installation

Installation of the module consists of several steps:

1. Preparing the metadata file.

2. Importing the metadata file into DHIS2.

3. Configuring the imported metadata.

4. Adapting the program after being imported

It is recommended to first read through each section of the installation guide before starting the installation
and configuration process in DHIS2. Identify applicable sections depending on the type of your import:

1. Import into a blank DHIS2 instance

2. Import into a DHIS2 instance with existing metadata (No other versions of TB Case Surveillance tracker
imported previously).

3. Update existing/older version of the TB Case Surveillance tracker.

The steps outlined in this document should be tested in a test/staging DHIS2 instance and only then applied
to a production environment.

Requirements

In order to install the module, a DHIS2 administrator user account is required.

Great care should be taken to ensure that the server itself and the DHIS2 application are well secured, access
rights to collected data should be defined. Details on securing a DHIS2 system are outside the scope of this
document, and we refer to the DHIS2 documentation.

Metadata files

The metadata reference and metadata json files provide technical details on package version and content.

While not always necessary, it can often required to make certain modifications to the metadata file before
importing it into DHIS2.

Preparing the metadata file

https://docs.dhis2.org/

It is recommended to import the DHIS2 Common HIS metadata library into the target instance before using
and adapting any DHIS2 metadata packages. Common HIS Metadata package is available for download in
the supported versions of DHIS2 at Metadata Package Downloads

Default data dimension

In early versions of DHIS2, the UIDs of the default data dimensions were auto-generated. Thus, while all
DHIS2 instances have a default category option, data element category, category combination and category
option combination, the UIDs of these defaults can be different. Later versions of DHIS2 have hardcoded
UIDs for the default dimension, and these UIDs are used in the configuration packages.

To avoid conflicts when importing the metadata, it is advisable to search and replace the entire .json file for all
occurrences of these default objects, replacing UIDs of the .json file with the UIDs from the instance in which
the file will be imported. Table 1 shows the UIDs which should be replaced, as well as the API endpoints to
identify the existing UIDs

Object UID API endpoint

Category GLevLNI9wkl ../api/categories.json?filter=name:eq:default

Category option xYerKDKCefk
../api/categoryOptions.json?

filter=name:eq:default

Category combination bjDvmb4bfuf ../api/categoryCombos.json?filter=name:eq:default

Category option
combination

HllvX50cXC0
../api/categoryOptionCombos.json?

filter=name:eq:default

Identify the UIDs of the default dimensions in your instance using the listed API requests and replace the
UIDs in the json file with the UIDs from the instance.

NOTE

Note that this search and replace operation must be done with a plain text editor, not a word processor
like Microsoft Word.

Indicator types

Indicator type is another type of object that can create import conflict because certain names are used in
different DHIS2 databases (.e.g "Percentage"). Since Indicator types are defined by their factor (including 1 for
"numerator only" indicators), they are unambiguous and can be replaced through a search and replace of the
UIDs. This method helps avoid potential import conflicts, and prevents the implementer from creating
duplicate indicator types. The table below contains the UIDs which could be replaced, as well as the API
endpoints to identify the existing UIDs:

Object UID API endpoint

Numerator only
(number)

CqNPn5KzksS
../api/indicatorTypes.json?

filter=number:eq:true&filter=factor:eq:1

https://dhis2.org/metadata-package-downloads

Tracked Entity Type

Like indicator types, you may have already existing tracked entity types in your DHIS2 database. The
references to the tracked entity type should be changed to reflect what is in your system so you do not create
duplicates. The table below contains the UIDs which could be replaced, as well as the API endpoints to
identify the existing UIDs:

Object UID API endpoint

Person MCPQUTHX1Ze ../api/trackedEntityTypes.json?filter=name:eq:Person

Option codes

According to the DHIS2 naming conventions, the metadata codes use capital letters, underscores and no
spaces. Some exceptions that may occur are specified in the corresponding package documentation. All
codes included in the metadata objects in the current package match the naming conventions. It may occur
that the codes of existing metadata objects used in the target database use lower case characters. In this
case, it is important to update those values directly in the database.

Important

During the import, the existing option codes will be overwritten with the updated upper case codes. In
order to update the data values for existing data in the database, it is necessary to update the values
stored in the database using database commands. Make sure to map existing old option codes and new
option codes before replacing the values. Use staging instance first, before making adjustments on the
production server.

For data element values, use:

```SQL

UPDATE programstageinstance
SET eventdatavalues = jsonb_set(eventdatavalues, '{"<affected data element uid>","value"}', '"<

WHERE eventdatavalues @> '{"<affected data element uid>":{"value": "<old value>"}}'::jsonb

AND programstageid=<database_programsatgeid>;

```

NOTE

When updating the UID of a metadata element in the existing DHIS2 instance, you will need to run an
SQL command in the database and additionally replace all occurrences and references of its UID in
other metadata objects: predictor, indicator, validation rule expressions, etc.

Sort order of options

Check whether the sort order sortOrder of options in your system matches the sort order of options included

in the metadata package. This only applies when the json file and the target instance contain options and
option sets with the same UID.

After import, make sure that the sort order of options within an option set starts at 1. There should be no gaps
(eg. 1,2,3,5,6) in the sort order values.

Sort order can be adjusted in the Maintenance app.

1. Go to the applicable Option Set

2. Open the "Options" section

3. Use "SORT BY NAME", "SORT BY CODE/VALUE" or "SORT MANUALLY" alternatives.

Make sure that no options within an option set have the same sort order. This can be checked using the
following api endpoint:

../api/options.json?paging=false&fields=id,name,sortOrder&filter=optionSet.id:in:[<optionSet

UID>]

In order to fix sort order in option sets containing large numbers of options, please refer to this SQL script.

Visualizations using Root Organisation Unit UID

Visualizations, event reports, report tables and maps that are assigned to a specific organisation unit level or
organisation unit group, have a reference to the root (level 1) organisation unit. Such objects, if present in the
metadata file, contain a placeholder <OU_ROOT_UID> . Use the search function in the .json file editor to
possibly identify this placeholder and replace it with the UID of the level 1 organisation unit in the target
instance.

Some visualizations and maps may contain references to organisation unit levels. Maps that consist of
several map views may contain vaious Organisation unit level references based on the configuration of the
map layer. Adjust the organisation unit level references in the metadata json file to match the organisation unit
structure in the target instance before importing the metadata file.

Upgrading metadata package

The process of upgrading an existing package to a newer version in a working DHIS2 instance is a complex
operation that has to be taken with precaution. Such process has to be run in a staging instance first, before
upgrading the configuration on the production server. As metadata objects may have been removed, added or
changed, it is important to ensure that:

the format of existing data can be mapped and adjusted to the new configuration;

the discontinued metadata objects are deleted from the instance;

The existing objects are updated;

the new objects are created;

assignment of users to relevant user groups is reviewed.

The diff file will help the implementer identify the necessary changes.

Importing metadata

Use Import/Export DHIS2 app to import metadata packages. It is advisable to use the "dry run" feature to
identify issues before attempting to do an actual import of the metadata. If "dry run" reports any issues or
conflicts, see the import conflicts section below. If the "dry run"/"validate" import works without error, attempt to
import the metadata. If the import succeeds without any errors, you can proceed to configuring the module. In

https://github.com/dhis2/dhis2-utils/blob/master/resources/sql/clean_up_option_sort_order.sql

some cases, import conflicts or issues are not shown during the "dry run", but appear when the actual import
is attempted. In this case, the import summary will list any errors that need to be resolved.

Handling import conflicts

NOTE

If you are importing the package into a new DHIS2 instance, you will not experience import conflicts, as
there is no metadata in the target database. After import the metadata, proceed to the “Configuration”
section.

There are a number of different conflicts that may occur, though the most common is that there are metadata
objects in the configuration package with a name, shortname and/or code that already exist in the target
database. There are a couple of alternative solutions to these problems, with different advantages and
disadvantages. Which one is more appropriate will depend, for example, on the type of object for which a
conflict occurs.

Alternative 1

Rename the existing object in your DHIS2 database for which there is a conflict. The advantage of this
approach is that there is no need to modify the .json file, as changes are instead done through the user
interface of DHIS2. This is likely to be less error prone. It also means that the configuration package is left as
is, which can be an advantage for example when updates to the package are released. The original package
objects are also often referenced in training materials and documentation.

Alternative 2

Rename the object for which there is a conflict in the .json file. The advantage of this approach is that the
existing DHIS2 metadata is left as-is. This can be a factor when there is training material or documentation
such as SOPs of data dictionaries linked to the object in question, and it does not involve any risk of
confusing users by modifying the metadata they are familiar with.

Note that for both alternative 1 and 2, the modification can be as simple as adding a small pre/post-fix to the
name, to minimise the risk of confusion.

Alternative 3

A third and more complicated approach is to modify the .json file to re-use existing metadata. For example, in
cases where an option set already exists for a certain concept (e.g. "sex"), that option set could be removed
from the .json file and all references to its UID replaced with the corresponding option set already in the
database. The big advantage of this (which is not limited to the cases where there is a direct import conflict) is
to avoid creating duplicate metadata in the database. There are some key considerations to make when
performing this type of modification:

it requires expert knowledge of the detailed metadata structure of DHIS2

the approach does not work for all types of objects. In particular, certain types of objects have
dependencies which are complicated to solve in this way, for example related to disaggregations.

future updates to the configuration package will be complicated.

Upgrading earlier versions of TB CS Tracker program

This section provides guidance on upgrading earlier versions of TB CS tracker (eg. versions 1.0.0 or 1.0.1).

For existing implementations, direct upgrade of metadata packages in the instance is not recommended.

Use the following steps before choosing the best upgrade strategy:

1. Import TB CS tracker 2.0.0 into a new test instance

2. Compare and map existing data with the TB CS tracker 2.0.0 configuration

3. Adapt TB CS tracker 2.0.0 based on local requirements

4. Use existing or custom data transfer tools to transfer data from existing configuration to TB CS tracker
2.0.0

5. Make assessment-based decisions regarding upgrade stratagy (adapting existing configuration or
moving data to the new tracker)

For demo and training purposes, the following upgrade process is recommended:

1. Create a backup of the instance with the TB CS tracker

2. The TB CS metadata objects that are listed below will have to be deleted from the target instance before
importing TB CS tracker.2.0.0. If you have customised or added any metadata objects from the previous
versions of the package, these need to be backed up, reconfigured and imported after upgrade. Delete
the following metadata objects from the target instance:

dashboards

visualizations

maps

eventReports

programIndicatorGroups

program indicators

indicatorGroups

indicators

trackedEntityInstanceFilters

dataElementGroups

programRules

programRuleActions

programRuleVariables

3. If you have existing data in the demo/training instance, you will be required to export all TB CS tracker
enrollment data, delete it in the instance and reimport once the data has been mapped and the TB CS
tracker has been updated upgraded. In TB CS tracker 1.0.0, only diagnosed TB cases are enrolled in the
program. TB CS tracker 2.0.0 allows both presumtive and diagnosed cases to be enrolled. The
enrollment date in 1.0.0 (Date of diagnosis) becomes date of registration in 2.0.0. For existing
enrollments, the enrollment date has to be mapped with the Date of diagnosis, which is a data element in
the Registration stage. Additional mappings for Notification date and other data elements will be
required.

4. Import TB CS tracker 2.0.0 into the instance.

5. Import mapped and missing data.

6. Test data entry, dashboards and general functionality.

Configuration

Once all metadata has been successfully imported, there are a few steps that need to be taken before the
module is functional.

Sharing

First, you will have to use the Sharing functionality of DHIS2 to configure which users (user groups) should
see the metadata and data associated with the program as well as who can register/enter data into the
program. By default, sharing has been configured for the following:

Dashboards

Visualizations, maps, event reports and report tables

Data sets

Category options

Programs and program stages

These core user groups are included in the package:

TB admin

TB access

TB lab access

TB data capture

TB lab data capture

By default the following is assigned to these user groups

Object
User
Groups

TB
access

TB lab access TB admin
TB data
capture

TB lab data
capture

Tracked
entity type

Metadata:
can view
Data: can
view

Metadata: can view
Data: can view

Metadata:
can edit
and view
Data: no
access

Metadata:
can view
Data: can
capture
and view

Metadata: can
view
Data: can
capture and
view

Program

Metadata:
can view
Data: can
view

Metadata: can view
Data: can view

Metadata:
can edit
and view
Data: no
access

Metadata:
can view
Data: can
capture
and view

Metadata: can
view
Data: can
capture and
view

Object
User
Groups

Program
Stages

Metadata:
can view
Data: can
view

Group access is limited
to stages: TB
Registration, Diagnostic
and Laboratory Results
Metadata: can view
Data: can view

Metadata:
can edit
and view
Data: no
access

Metadata:
can view
Data: can
capture
and view

Group access
is limited to
stages: TB
Registration
and
Laboratory
Results
Metadata: can
view
Data: can
capture and
view

Dashboards

Metadata:
can view
Data: can
view

Metadata: can view
Data: can view

Metadata:
can edit
and view
Data: no
access

No
access

No access

Users need to be assigned to the aplicable user group based on their role within the system. Sharing for other
objects in the package should be set up depending on requirements. Refer to the DHIS2 Documentation for
more information on configuring sharing.

User Roles

Users will need user roles in order to engage with the various applications within DHIS2. The following
minimum roles are recommended:

1. Tracker data analysis : Can see event analytics and access dashboards, event reports, event visualizer,
data visualizer, pivot tables, reports and maps.

2. Tracker data capture : Can add data values, update tracked entities, search tracked entities across org
units and access tracker capture

Refer to the DHIS2 Documentation for more information on configuring user roles.

Organisation Units

Program must be assigned to applicable organisation units within the organisation unit hierarchy.

Duplicated metadata

NOTE

This section only applies if you are importing into a DHIS2 database in which there is already meta-data
present. If you are working with a new DHIS2 instance, please skip this section and go to Adapting the

https://docs.dhis2.org/en/develop/using-the-api/dhis-core-version-master/sharing.html
http://dhis2.org/documentation

tracker program. If you are using any third party applications that rely on the current metadata, please
take into account that this update could break them”

Even when metadata has been successfully imported without any import conflicts, there can be duplicates in
the metadata - data elements, tracked entity attributes or option sets that already exist. As was noted in the
section above on resolving conflict, an important issue to keep in mind is that decisions on making changes to
the metadata in DHIS2 also needs to take into account other documents and resources that are in different
ways associated with both the existing metadata, and the metadata that has been imported through the
configuration package. Resolving duplicates is thus not only a matter of "cleaning up the database", but also
making sure that this is done without, for example, breaking potential integrating with other systems, the
possibility to use training material, breaking SOPs etc. This will very much be context-dependent.

Constants

TB Case Surveillance Tracker package includes a set of tests and a list of drugs that can be modified by the
implementing country according to national context (e.g. which drugs and tests are used/available in country).
The use of constants and corresponding program rules enables a system admin in an implementing country
to easily ‘turn on’ or ‘turn off’ types of drugs and tests depending on requirements. Instructions for configuring
constants are provided in the description of the constant objects.

Configuring tracker capture interface, widgets and top bar

You must configure tracker capture dashboard after the package has been installed. This configuration
includes data entry forms, widgets and top bar.

Data entry forms

After registering the first (test) case, access the Settings menu in the tracker capture form and select
Show/Hide Widgets

Use Timeline Data Entry

Make sure that Enrollment, Feedback and Profile widgets are selected. Click Close.

Top Bar

Access the Settings menu and select Top bar settings

Select Activate top bar

Select required information fields and assign Sort order

Recommended fields Sort order

Attributes

TB Registration Number 2

Indicators

Case classification 8

Patient's age (years) 5

HIV Status at diagnosis 6

Recommended fields Sort order

Resistance at diagnosis 10

Treatment regimen 9

Date of diagnosis 1

Months since diagnosis 3

Resistance classification at diagnosis 7

Patient's age (months) 4

Click Save

Return to the Settings menu. Click Saved dashboard layout as default. Lock layout for all users.

Program notifications

TB CS Tracker 2.0.0 includes 4 notification templates that can be edited based on local requirements.
Additional configuration for setting up SMS or email notifications is required.

Reporting case-based data into aggregate data sets

The TB case-based surveillance tracker captures data that can be fed into standard, aggregate reporting (i.e.
monthly, quarterly, yearly or as determined by the country). Aggregate DHIS2 TB HMIS system design can be
accessed at https://dhis2.org/metadata-package-downloads/#tb

This Tracker-to-Aggregate tool can be easily configured for data transfer..

More information is available in the Tracker to aggregate data integration guide.

The program indicators in the TB Case Surveillance and Laboratory package are mapped with data
elements and category option combinations in the DHIS2 TB aggregate package (Laboratory, Notifications
and outcomes).

Adapting the tracker program

Once the programme has been imported, you might want to make certain modifications to the programme.
Examples of local adaptations that could be made include:

Adding additional variables to the form.

Adapting data element/option names according to national conventions.

Adding translations to variables and/or the data entry form.

Modifying program indicators based on local case definitions.

However, it is strongly recommended to take great caution if you decide to change or remove any of the
included form/metadata. There is a danger that modifications could break functionality, for example program
rules and program indicators.

https://dhis2.org/metadata-package-downloads/#tb
https://github.com/dhis2/integration-t2a
https://docs.dhis2.org/en/implement/maintenance-and-use/tracker-and-aggregate-data-integration.html#how-to-saving-aggregated-tracker-data-as-aggregate-data-values

