
Insecticide-Treated Nets - Bioefficacy Installation
Guide { #ento-itn-bio-installation }

Installation

Installation of the module consists of several steps:

1. Preparing the metadata file with DHIS2 metadata.

2. Importing the metadata file into DHIS2.

3. Configuring the imported metadata.

4. Adapting the program after import

It is recommended to first read through each section of the installation guide before starting the installation
and configuration process in DHIS2. Identify applicable sections depending on the type of your import:

1. import into a blank DHIS2 instance

2. import into a DHIS2 instance with existing metadata.

The steps outlined in this document should be tested in a test/staging DHIS2 instance and only then applied
to a production environment.

Requirements

In order to install the module, an administrator user account on DHIS2 is required.

Great care should be taken to ensure that the server itself and the DHIS2 application are well secured, access
rights to collected data should be defined. Details on securing a DHIS2 system is outside the scope of this
document, and we refer to the DHIS2 documentation.

Metadata files

While not always necessary, it can often be advantageous to make certain modifications to the metadata file
before importing it into DHIS2.

Preparing the metadata file

It is required to apply some changes to the metadata file before it can be imported. The scope of work may
vary from package to package.

Default data dimension

In early versions of DHIS2, the UIDs of the default data dimensions were auto-generated. Thus, while all
DHIS2 instances have a default category option, data element category, category combination and category

https://docs.dhis2.org/

option combination, the UIDs of these defaults can be different. Later versions of DHIS2 have hardcoded
UIDs for the default dimension, and these UIDs are used in the configuration packages.

To avoid conflicts when importing the metadata, it is advisable to search and replace the entire .json file for all
occurrences of these default objects, replacing UIDs of the .json file with the UIDs from the instance in which
the file will be imported. Table 1 shows the UIDs which should be replaced, as well as the API endpoints to
identify the existing UIDs

Object UID API endpoint

Category GLevLNI9wkl ../api/categories.json?filter=name:eq:default

Category option xYerKDKCefk
../api/categoryOptions.json?

filter=name:eq:default

Category combination bjDvmb4bfuf ../api/categoryCombos.json?filter=name:eq:default

Category option
combination

HllvX50cXC0
../api/categoryOptionCombos.json?

filter=name:eq:default

Identify the UIDs of the default dimesions in your instance using the listed API requests and replace the UIDs
in the json file with the UIDs from the instance.

NOTE

Note that this search and replace operation must be done with a plain text editor, not a word processor
like Microsoft Word.

Visualizations using Root Organisation Unit UID

Visualizations, event reports, report tables and maps that are assigned to a specific organisation unit level or
organisation unit group, have a reference to the root (level 1) organisation unit. Such objects, if present in the
metadata file, contain a placeholder <OU_ROOT_UID> . Use the search function in the .json file editor to
possibly identify this placeholder and replace it with the UID of the level 1 organisation unit in the target
instance.

Option codes

According to the DHIS2 naming conventions, the metadata codes use capital letters, underscores and no
spaces. Some exceptions that may occur are specified in the corresponding package documentation. All
codes included in the metadata objects in the current version of the package were adjusted to match the
naming conventions. It may occur that the codes used in the earlier versions of the package used lower case
characters. If data values in the existing implementations contain lower case codes, it is important to update
those values directly in the database.

Important

During the import, the existing option codes will be overwritten with the updated upper case codes. In
order to update the data values for existing data in the database, it is necessary to update the values
stored in the database using database commands. Make sure to map existing old option codes and new

option codes before replacing the values. Use staging instance first, before making adjustments on the
production server.

For data element values, use:

 ```SQL

 UPDATE programstageinstance
 SET eventdatavalues = jsonb_set(eventdatavalues, '{"<affected data element uid>","value"}', '"

 WHERE eventdatavalues @> '{"<affected data element uid>":{"value": "<old value>"}}'::jsonb

 AND programstageid=<database_programsatgeid>;

 ```

For tracked entity attribute values, use:

```SQL

UPDATE trackedentityattributevalue

SET value = <new value>
WHERE trackedentityattributeid=<affected trackedentityattribute database_id> AND value=<old val

```

Example

To replace the option code 'yes' with 'YES' for existing data values (data element RMS - Died in health
facility CBAs12YL4g7) in the programstage with the id=1510410385 (example id), the command will be
configured as follows:

```SQL

UPDATE programstageinstance

SET eventdatavalues = jsonb_set(eventdatavalues, '{"CBAs12YL4g7","value"}', '"YES"')
WHERE eventdatavalues @> '{"CBAs12YL4g7":{"value": "yes"}}'::jsonb

AND programstageid=1510410385;

```

Option codes are also used in program rule expressions, program indicators, etc. If you are updating code
options in your system, make sure you update the codes in all affected metadata objects.

Sort order for options

Check whether the sort order sortOrder of options in your system matches the sort order of options included

in the metadata package. This only applies when the json file and the target instance contain options and
option sets with the same UID.

After import, make sure that the sort order for options within an option set starts at 1. There should be no gaps
(eg. 1,2,3,5,6) in the sort order values.

Sort order can be adjusted in the Maintenance app.

1. Go to the applicable Option Set

2. Open the "Options" section

3. Use "SORT BY NAME", "SORT BY CODE/VALUE" or "SORT MANUALLY" alternatives.

Importing metadata

Use Import/Export DHIS2 app to import metadata packages. It is advisable to use the "dry run" feature to
identify issues before attempting to do an actual import of the metadata. If "dry run" reports any issues or
conflicts, see the import conflicts section below. If the "dry run"/"validate" import works without error, attempt to
import the metadata. If the import succeeds without any errors, you can proceed to configuring the module. In
some cases, import conflicts or issues are not shown during the "dry run", but appear when the actual import
is attempted. In this case, the import summary will list any errors that need to be resolved.

Handling import conflicts

There are a number of different conflicts that may occur, though the most common is that there are metadata
objects in the configuration package with a name, shortname and/or code that already exist in the target
database. There are a couple of alternative solutions to these problems, with different advantages and
disadvantages. Which one is more appropriate will depend, for example, on the type of object for which a
conflict occurs.

NOTE

If you are importing the package into a new DHIS2 instance, you will not experience import conflicts, as
there is no metadata in the target database. After importing the metadata, proceed to the “Configuration”
section.

Alternative 1

Rename the existing object in your DHIS2 database for which there is a conflict. The advantage of this
approach is that there is no need to modify the .json file, as changes are instead done through the user
interface of DHIS2. This is likely to be less error prone. It also means that the configuration package is left as
is, which can be an advantage for example when updates to the package are released. The original package
objects are also often referenced in training materials and documentation.

Alternative 2

Rename the object for which there is a conflict in the .json file. The advantage of this approach is that the
existing DHIS2 metadata is left as-is. This can be a factor when there is training material or documentation
such as SOPs of data dictionaries linked to the object in question, and it does not involve any risk of
confusing users by modifying the metadata they are familiar with.

Note that for both alternative 1 and 2, the modification can be as simple as adding a small pre/post-fix to the
name, to minimise the risk of confusion.

Alternative 3

A third and more complicated approach is to modify the .json file to re-use existing metadata. For example, in
cases where an option set already exists for a certain concept (e.g. "sex"), that option set could be removed
from the .json file and all references to its UID replaced with the corresponding option set already in the
database. The big advantage of this (which is not limited to the cases where there is a direct import conflict) is
to avoid creating duplicate metadata in the database. There are some key considerations to make when
performing this type of modification:

it requires expert knowledge of the detailed metadata structure of DHIS2

the approach does not work for all types of objects. In particular, certain types of objects have
dependencies which are complicated to solve in this way, for example related to disaggregations.

future updates to the configuration package will be complicated.

Configuration

Once all metadata has been successfully imported, there are a few steps that need to be taken before the
module is functional.

Sharing

First, you will have to use the Sharing functionality of DHIS2 to configure which users (user groups) should
see the metadata and data associated with the program as well as who can register/enter data into the
program. By default, sharing has been configured for the following:

Program

Dashboards

Visualizations, maps, event reports and report tables

Please refer to the DHIS2 documentation for more information on sharing.

The following core user groups are included in the package:

ENTO - Field Access

ENTO - Field Admin

ENTO - Field Data Capture

By default, the following permissions are assigned to these user groups:

Object User Group

ENTO - Field Access ENTO - Field Data Capture ENTO - Field Admin

Program
Metadata : can view
Data: can view

Metadata : can view
Data: can capture and view

Metadata : can edit and view
Data: no access

Dashboards Metadata : can view no access Metadata : can edit and view

The users are assigned to the appropriate user group based on their role within the system. Sharing for other
objects in the package may be adjusted depending on the set up. Refer to the DHIS2 Documentation on
sharing for more information.

User Roles

Users will need user roles in order to engage with the various applications within DHIS2. The following
minimum roles are recommended:

1. Tracker data analysis : Can see event analytics and access dashboards, event reports, event visualizer,
data visualizer, pivot tables, reports and maps.

2. Tracker data capture : Can add data values, update tracked entities, search tracked entities across org
units and access tracker capture

Refer to the DHIS2 Documentation for more information on configuring user roles.

Organisation Units

The program and the data sets must be assigned to organisation units within existing hierarchy in order to be
accessible via tracker capture/capture apps.

Duplicated Metadata

NOTE

This section only applies if you are importing into a DHIS2 database in which there is already meta-data
present. If you are working with a new DHIS2 instance, please skip this section and go to Adapting the
program. If you are using any third party applications that rely on the current metadata, please take into
account that this update could break them.

Even when metadata has been successfully imported without any import conflicts, there can be duplicates in
the metadata - data elements, tracked entity attributes or option sets that already exist. As was noted in the
section above on resolving conflict, an important issue to keep in mind is that decisions on making changes to
the metadata in DHIS2 also needs to take into account other documents and resources that are in different
ways associated with both the existing metadata, and the metadata that has been imported through the
configuration package. Resolving duplicates is thus not only a matter of "cleaning up the database", but also
making sure that this is done without, for example, breaking potential integrating with other systems, the
possibility to use training material, breaking SOPs etc. This will very much be context-dependent.

One important thing to keep in mind is that DHIS2 has tools that can hide some of the complexities of potential
duplications in metadata. For example, where duplicate option sets exist, they can be hidden for groups of
users through sharing.

Adapting the Program

Once the program has been imported, you might want to make certain modifications to the program. Examples
of local adaptations that could be made include:

Adding additional variables to the form.

Adapting data element/option names according to national conventions.

Adding translations to variables and/or the data entry form.

Modifying program indicators based on local case definitions

However, it is strongly recommended to take great caution if you decide to change or remove any of the
included form/metadata. There is a danger that modifications could break functionality, for example program
rules and program indicators.

Removing metadata

https://docs.dhis2.org/

In order to keep your instance clean and avoid errors, it is recommended that you remove the unnecessary
metadata from your instance.

