Vital Events Birth, Stillbirth and Death
notifications - Tracker Installation Guide { #crvs-
ve-trk-installation }

This document includes an installation guide for the updated Vital Events tracker package.
System default language: English

Available translations: French, Spanish, Portuguese

Overview

The package metadata json files contain a "package" component that provides technical details on package
version and content. The files available in the current version of the package are listed below.

DHIS2.35

==="Complete Package"

" 7json

"package": {
"DHIS2Build": "35d663a",
"DHIS2Version": "2.35.11",
"code": "VE0OGQ",

"description": "vital Events",
"lastUpdated": "20220120T113753",
"locale": "en",

"name": "CRVS_VE_TKR_1.1.0_DHIS2.35.11-en",
lltypell . IITKRII

. 14
"version": "1.1.0"

DHIS2.36

==="Complete Package"

" 7json

"package": {
"DHIS2Build": "5d136ch",
"DHIS2Version": "2.36.6",
"code": "VEGOGO",

"description": "vital Events",
"lastUpdated": '"20220120T140039",
"locale": "en",

"name": "CRVS_VE_TKR_1.1.0_DHIS2.36.6-en",
lltypell : HTKRII,

"version": "1.1.0"

Installation

Installation of the module consists of several steps:

1. Preparing the metadata file with DHIS2 metadata.
2. Importing the metadata file into DHIS2.
3. Configuring the imported metadata.

4. Adapting the program after import

It is recommended to first read through each section of the installation guide before starting the installation
and configuration process in DHIS2. Identify applicable sections depending on the type of your import:

1. importinto a blank DHIS2 instance

2. import into a DHIS2 instance with existing metadata.

The steps outlined in this document should be tested in a test/staging DHIS2 instance and only then applied
to a production environment.

Requirements

In order to install the module, an administrator user account on DHIS2 is required.

Great care should be taken to ensure that the server itself and the DHIS2 application are well secured, access
rights to collected data should be defined. Details on securing a DHIS2 system is outside the scope of this
document, and we refer to the DHIS2 documentation.

Metadata files

While not always necessary, it can often be advantageous to make certain modifications to the metadata file
before importing it into DHIS2.

The Vital Events tracker package includes three metadata files. The contents and purposose of each
individual file are described below:

Package identifier Contents Purpose

CRVS_VE_TKR_1.1.0 DHIS2.35.11-en Updated tracker package = New implementation

Preparing the metadata file

Default data dimension

https://docs.dhis2.org/

In early versions of DHIS2, the UIDs of the default data dimensions were auto-generated. Thus, while all
DHIS2 instances have a default category option, data element category, category combination and category
option combination, the UIDs of these defaults can be different. Later versions of DHIS2 have hardcoded
UIDs for the default dimension, and these UIDs are used in the configuration packages.

To avoid conflicts when importing the metadata, it is advisable to search and replace the entire .json file for all
occurrences of these default objects, replacing UIDs of the .json file with the UIDs from the instance in which
the file will be imported. Table 1 shows the UIDs which should be replaced, as well as the APl endpoints to
identify the existing UIDs

Object uiD APl endpoint
Category GLevLNI9wkl ../api/categories.json?filter=name:eq:default
. ../api/categoryOptions.json?
Category option xYerKDKCefk
filter=name:eq:default
Category combination bjDvmb4bfuf ../api/categoryCombos.json?filter=name:eq:default
Category option ../api/categoryOptionCombos. json?
g ry. > H11vX50cXCO . P goryep]
combination filter=name:eq:default

Identify the UIDs of the default dimesions in your instance using the listed API requests and replace the UIDs
in the json file with the UIDs from the instance.

NOTE

Note that this search and replace operation must be done with a plain text editor, not a word processor
like Microsoft Word.

Indicator types

Indicator type is another type of object that can create import conflict because certain names are used in
different DHIS2 databases (.e.g "Percentage"). Since Indicator types are defined by their factor (including 1 for
"numerator only" indicators), they are unambiguous and can be replaced through a search and replace of the
UIDs. This method helps avoid potential import conflicts, and prevents the implementer from creating
duplicate indicator types. The table below contains the UIDs which could be replaced, as well as the API
endpoints to identify the existing UIDs:

Object uiD API endpoint
Numerator only ../api/indicatorTypes.json?
kHy61PbChXr _ _

(number) filter=number:eq:true&filter=factor:eq:1
../api/indicatorTypes.json?

Per 1000 zpadvuc7Iwd i i

filter=number:eq:false&filter=factor:eq:1000

../api/indicatorTypes.json?

Percentage hmSnCXmLYwt

filter=number:eq:false&filter=factor:eq:100

Tracked Entity Type

Like indicator types, you may have already existing tracked entity types in your DHIS2 database. The
references to the tracked entity type should be changed to reflect what is in your system so you do not create
duplicates. The table below contains the UIDs which could be replaced, as well as the API endpoints to
identify the existing UIDs:

Object uiD APl endpoint

Person MCPQUTHX1Ze ../api/trackedEntityTypes.json?filter=name:eq:Person

Visualizations using Root Organisation Unit UID

Visualizations, event reports, report tables and maps that are assigned to a specific organisation unit level or
organisation unit group, have a reference to the root (level 1) organisation unit. Such objects, if present in the
metadata file, contain a placeholder <ou_R00T_UID> . Use the search function in the .json file editor to
possibly identify this placeholder and replace it with the UID of the level 1 organisation unitin the target
instance.

Option codes

According to the DHIS2 naming conventions, the metadata codes use capital letters, underscores and no
spaces. Some exceptions that may occur are specified in the corresponding package documentation. All
codes included in the metadata objects in the current version of the package were adjusted to match the
naming conventions. It may occur that the codes used in the earlier versions of the package used lower case
characters. If data values in the existing implementations contain lower case codes, it is important to update
those values directly in the database.

The table below contains all option sets where codes were changed to upper case in the metadata package.
Before importing metadata into the instance, check whether the option sets in the existing system match those
in the package .json and use the same upper case option codes.

Option set nhame Option set UID
GEN - Birth attendant type gHkSQ7ti6zn
GEN - Birth type jumQOTED1f4
GEN - Manner of death A7mNd2r3zJe
GEN - Mode of delivery whFhwY80xAQ
GEN - Place of birth BKY9x470Eff
GEN - Sex (with unknown) rlyDq7Ue43q
Marital status rkRT5bxwyAt

Relationship (Mother/Father/Spouse/Other) ocdVHauxjzI
Stillbirth type tPXEZ46FACM
VE - Place of death occurrence tPXEZ46FACM

VE - Registration Reason I90dDKWASNH

The table below contains metadata elements that use an affected option set:

Metadata object Name uiD
Data element GEN - Place of birth ABhKINPOWGY
Data element GEN - Birth type Lt1zGAPWWOS8
Data element GEN - Attendant at birth 1QtJB35vsDj
Data element GEN - Mode of delivery FF7wxNymoun
Data element VE - Place of death XkvdOAv6d3V
Data element GEN - Manner of Death MAQI45DkhPd
Data element VE - Stillbirth classification vjNz3tj3ins
Tracked Entity Attribute Vital Events Sex M/F/U fSN3gGMwRL i
Tracked Entity Attribute Vital Events Marital Status EhEPMB7n31b
Tracked Entity Attribute Vital Events Relationship 1 Nv4K50b82z3
Tracked Entity Attribute Vital Events Relationship 2 egRR31y(qDOF

Important

During the import, the existing option codes will be overwritten with the updated upper case codes. In
order to update the data values for existing data in the database, it is necessary to update the values
stored in the database using database commands. Make sure to map existing old option codes and new
option codes before replacing the values. Use staging instance first, before making adjustments on the
production server.

For data element values, use:

T TSQL
UPDATE programstageinstance
SET eventdatavalues = jsonb_set(eventdatavalues, '{"<affected data element uid>", "value"}',6 '"<
WHERE eventdatavalues @> '{"<affected data element uid>":{"value": "<old value>"}}'::jsonb
AND programstageid=<database_programsatgeid>;

For tracked entity attribute values, use:

*UsQL
UPDATE trackedentityattributevalue
SET value = <new value>
WHERE trackedentityattributeid=<affected trackedentityattribute database_id> AND value=<old val

Example

To replace the option code 'yes' with "YES' for existing data values (data element COVAC - Previously
infected with COVID Lou9tearez7) in the programstage with the id=1510410385 (example id), the
command will be configured as follows:

TTUSQL
UPDATE programstageinstance
SET eventdatavalues = jsonb_set(eventdatavalues, '{"LOU9t@aROz7","value"}',6 '"YES"')

WHERE eventdatavalues @> '{"LOU9t@aROz7":{"value": "yes"}}'::jsonb
AND programstageid=1510410385;

Option codes are also used in program rule expressions, program indicators, etc. If you are updating code
options in your system, make sure you update the codes in all affected metadata objects.

Sort order for options

Check whether the sort order sortorder of options in your system matches the sort order of options included
in the metadata package. This only applies when the json file and the target instance contain options and
option sets with the same UID.

After import, make sure that the sort order for options within an option set starts at 1. There should be no gaps
(eg. 1,2,3,5,6) in the sort order values.

Sort order can be adjusted in the Maintenance app.

1. Go to the applicable Option Set
2. Open the "Options" section
3. Use "SORT BY NAME", "SORT BY CODE/NALUE" or "SORT MANUALLY" alternatives.

Importing metadata

Use Import/Export DHIS2 app to import metadata packages. It is advisable to use the "dry run" feature to
identify issues before attempting to do an actual import of the metadata. If "dry run" reports any issues or
conflicts, see the import conflicts section below. If the "dry run”/*validate" import works without error, attempt to
import the metadata. If the import succeeds without any errors, you can proceed to configuring the module. In
some cases, import conflicts or issues are not shown during the "dry run", but appear when the actual import
is attempted. In this case, the import summary will list any errors that need to be resolved.

Handling import conflicts
NOTE

If you are importing the package into a new DHIS2 instance, you will not experience import conflicts, as
there is no metadata in the target database. After import the metadata, proceed to the “Configuration”
section.

There are a number of different conflicts that may occur, though the most common is that there are metadata
objects in the configuration package with a name, shortname and/or code that already exist in the target
database. There are a couple of alternative solutions to these problems, with different advantages and

disadvantages. Which one is more appropriate will depend, for example, on the type of object for which a
conflict occurs.

Alternative 1

Rename the existing object in your DHIS2 database for which there is a conflict. The advantage of this
approach is that there is no need to modify the .json file, as changes are instead done through the user
interface of DHIS2. This is likely to be less error prone. It also means that the configuration package is left as
is, which can be an advantage for example when updates to the package are released. The original package
objects are also often referenced in training materials and documentation.

Alternative 2

Rename the object for which there is a conflict in the .json file. The advantage of this approach is that the
existing DHIS2 metadata is left as-is. This can be a factor when there is training material or documentation
such as SOPs of data dictionaries linked to the object in question, and it does not involve any risk of
confusing users by modifying the metadata they are familiar with.

Note that for both alternative 1 and 2, the modification can be as simple as adding a small pre/post-fix to the
name, to minimise the risk of confusion.

Alternative 3

A third and more complicated approach is to modify the .json file to re-use existing metadata. For example, in
cases where an option set already exists for a certain concept (e.g. "sex"), that option set could be removed
from the .json file and all references to its UID replaced with the corresponding option set already in the
database. The big advantage of this (which is not limited to the cases where there is a direct import conflict) is
to avoid creating duplicate metadata in the database. There are some key considerations to make when
performing this type of modification:

o itrequires expert knowledge of the detailed metadata structure of DHIS2

» the approach does not work for all types of objects. In particular, certain types of objects have
dependencies which are complicated to solve in this way, for example related to disaggregations.

o future updates to the configuration package will be complicated.

Configuration

Once all metadata has been successfully imported, there are a few steps that need to be taken before the
module is functional.

Sharing

First, you will have to use the Sharing functionality of DHIS2 to configure which users (user groups) should
see the metadata and data associated with the program as well as who can register/enter data into the
program. By default, sharing has been configured for the following:

o Tracked entity type
e Program

e Program stages

Dashboards

Visualizations, maps, event reports and report tables

Data sets

Category options
Please refer to the DHIS2 documentation for more information on sharing.
Three core user groups are included in the package:

e VE - Access
e VE - Data capture
¢ VE - Admin

By default, the following permissions are assigned to these user groups:

Object User Group
VE - Access VE - Data capture VE - Admin
. i Metadata : can view . i
Tracked entity Metadata : can view Metadata : can edit and view
, Data: can capture and .
type Data: can view i Data: can view
view
i Metadata : can view) i
Metadata : can view Metadata : can edit and view
Program . Data: can capture and .
Data: can view . Data: can view
view
i Metadata : can view) i
Metadata : can view Metadata : can edit and view
Program Stages) Data: can capture and .
Data: can view . Data: can view
view
Dashboards Metadata : can view No Access Metadata : can edit and view
Metadata : can view Metadata : can edit and view
Data Sets . No Access
Data: can view Data: No access

The users are assigned to the appropriate user group based on their role within the system. Sharing for other
objects in the package may be adjusted depending on the set up. Refer to the DHIS2 Documentation on
sharing for more information.

User roles

Users will need user roles in order to engage with the various applications within DHIS2. The following
minimum roles are recommended:

1. Tracker data analysis : Can see event analytics and access dashboards, event reports, event visualizer,
data visualizer, pivot tables, reports and maps.

2. Tracker data capture : Can add data values, update tracked entities, search tracked entities across org
units and access tracker capture

Refer to the DHIS2 Documentation for more information on configuring user roles.

https://docs.dhis2.org/

Organisation units

The program and the data sets must be assigned to organisation units within existing hierarchy in order to be
accessible via tracker capture/capture apps.

Duplicated metadata
NOTE

This section only applies if you are importing into a DHIS2 database in which there is already meta-data
present. If you are working with a new DHIS2 instance, please skip this section and go to Adapting the
tracker program. If you are using any third party applications that rely on the current metadata, please
take into account that this update could break them.

Even when metadata has been successfully imported without any import conflicts, there can be duplicates in
the metadata - data elements, tracked entity attributes or option sets that already exist. As was noted in the
section above on resolving conflict, an important issue to keep in mind is that decisions on making changes to
the metadata in DHIS2 also needs to take into account other documents and resources that are in different
ways associated with both the existing metadata, and the metadata that has been imported through the
configuration package. Resolving duplicates is thus not only a matter of "cleaning up the database", but also
making sure that this is done without, for example, breaking potential integrating with other systems, the
possibility to use training material, breaking SOPs etc. This will very much be context-dependent.

One important thing to keep in mind is that DHIS2 has tools that can hide some of the complexities of potential
duplications in metadata. For example, where duplicate option sets exist, they can be hidden for groups of
users through sharing.

Adapting the program

Once the program has been imported, you might want to make certain modifications to the program. Examples
of local adaptations that could be made include:

Adding additional variables to the form.

Adapting data element/option names according to national conventions.

Adding translations to variables and/or the data entry form.

Modifying program indicators based on local case definitions

However, it is strongly recommended to take great caution if you decide to change or remove any of the
included form/metadata. There is a danger that modifications could break functionality, for example program
rules and program indicators.

Removing metadata

In order to keep your instance clean and avoid errors, itis recommended that you remove the unnecessary
metadata from your instance.

In order to remove the old dashboard from your system, you need to:

NOTE

Itis possible to delete the dashboard, its dashboard items and all relevant visualizations, maps and
reports directly from the database using SQL commands.

Upgrading from 1.0.0 to 1.1.0

Metadata delete

Importing version 1.1.0 of the Vital Events package in an instance where 1.0.0 has been already installed is
enough to create and update the metadata but the following metadata elements should be deleted:

Type uiD Name

TEA u0dqjGQ3z8o VE - Sex is unknown

PR napRgSZqVp4 Hide Sex if "Sex is unknown" is checked

PR dp6ev2TTLUH Hide Sex is unknown if reason for registration is not 2 (stillbirth)

Migrating legacy data to the new metadata

Update values entered for all TEA Sex, i.e. replace UID of TEA Sex with UID of TEA Sex M/F/U

TTUSsQL

UPDATE trackedentityattributevalue

SET trackedentityattributeid = (SELECT trackedentityattributeid FROM trackedentityattribute whe
WHERE trackedentityattributeid = (SELECT trackedentityattributeid FROM trackedentityattribute w

For all values corresponding to TEA Sex is Unknown = true, replace UID of TEA with UID of TEA Sex M/F/U
and replace true with UNKNOWN

*UsQL
UPDATE trackedentityattributevalue
SET value = 'UNKNOWN',
trackedentityattributeid = (SELECT trackedentityattributeid FROM trackedentityattribute where L
WHERE trackedentityattributeid = (SELECT trackedentityattributeid FROM trackedentityattribute w
and value = 'true';

